Academy of Sciences of the United States and the International Cooperation Administration for financial assistance to help complete this investigation.

References

BROWN, C. J. (1954). Acta Cryst. 7, 92.

CRAIG, D. et al. (1954). J. Amer. Chem. Soc. 76, 4573.
 FRIEDLANDER, P. H., LOVE, W. & SAYRE, D. (1955).
 Acta Cryst. 8, 732.

- Post, B., Schwartz, R. S. & Fankuchen, I. (1951). Rev. Sci. Instrum. 22, 218.
- ROSSMANN, M. G., JACOBSON, R. A., HIRSHFELD, F. L. & LIPSCOMB, W. N. (1959). Acta Cryst. 12, 530.

Acta Cryst. (1961). 14, 507

Refinement of the Structure of *n*-Nonanoic Acid Hydrazide*

By L. H. JENSEN[†] AND E. C. LINGAFELTER

Departments of Anatomy and Chemistry, University of Washington, Seattle 5, Washington, U.S.A.

(Received 21 March 1960)

The crystal structure of *n*-nonanoic acid hydrazide has been refined by three-dimensional ΔF syntheses. The structure consists of molecular ribbons laced together by N-H···O and N-H···N bonds. These ribbons laid face-to-face make up 'molecular double layers' similar to those occurring in many other long-chain structures.

Within the limit of experimental error, the paraffin chain is planar except for a small deviation at the methyl C atom, and the C-C bonds are equal except for that adjacent to the carbonyl group. The average C-C bond length when corrected for angular oscillation is 1.526 Å. Although the maximum corrections in the bond lengths due to angular oscillation of the molecule as a whole are small, it is shown that similar corrections due to oscillation of an atom about another to which it is bonded may be relatively large. Thus the correction to the C-O bond is +0.014 Å or three times its standard deviation.

It has been shown that the melting points of monoacyl derivatives of hydrazine with 4–12 carbon atoms fall on a single smooth curve when plotted against the number of carbon atoms (Kyame, Fisher & Bickford, 1947). This implies that the compounds with even or odd numbers of carbon atoms in the chain have either the same structure or different structures with similar lattice energies and variation of lattice energies with number of carbon atoms.

The length of the C-C single bonds in organic molecules is usually taken to be equal to that in diamond, 1.5445 Å, although until recently this has not been subject to experimental verification with any degree of precision. Furthermore, the C-C bonds in hexamethylene diamine indicate a possible alternation in length (Binnie & Robertson, 1950).

Finally, certain paraffin chain compounds are good models of biological membrane systems and their structures shed light on possible chain configuration and packing in such systems.

For these reasons, the structures of two monoacyl hydrazides have been determined, one with an even number (Jensen, 1956), the other with an odd number of C atoms in the chain. This is to report the structure

Fig. 1. Structural formula for n-nonanoic acid hydrazide.

^{*} Presented at the annual meeting of the American Crystallographic Association, Cornell University, Ithica, New York, July, 1959.

[†] Present address: M.R.C. Unit, Cavendish Laboratory, University of Cambridge, Cambridge, England.

				rapie	1. Observ	eu una c	місши	ieu sirucii	ите јасно	78 X 10	9			
,	F	F	1 7	F.	F.	1 7	F.	F.	1 1	F.	F.	1 1	F	F
ι	L O	-	i i	1.0	- c		1.0	- c		F 0	r c		1.0	r c
	100		-10	232	-215		281	-280	-8	95	78	26	$<\!43$	3
c	907	919	-8	741	801	-14	< 48	5	-6	190	-159	28	< 40	-12
0	207	212	6	772	855	- 12	259	257		< 61	80	20	56	19
8	800	-852	-0	0101	000	-12	202	401		101	00		00	10
10	363	403	-4	2131	- 2784	- 10	382	-421	-2	101	- 99	32	< 34	- 31
19	926	-1001	-2	1552	1853	-8	434	469	0	101	113	34	< 29	14
14	020	- 1001	0	1386	1600	-6	509	-545	2	< 61	- 18			
14	270	291	Ň	471	470	4	596	540	1 4	- 61	20		017	
16	413	-452		4/1	479	-4	030	- 548	4	< 01	- 20		011	
18	299	- 262	4	221	237	-2	381	375	6	76	76	1 1	126	-122
20	100	150	6	81	35	0	253	237	8	< 62	-63	â	100	000
z_0	102	198		104	159	ő	957	951	10	05	105	3	190	203
22	490	- 491	0	124	105	4	207	201	10	60	105	5	299	-292
24	95	114	10	< 34	9	4	<47	- 15	12	< 63	3	7	68	55
56	100	179	12	194	-201	6	124	123	14	115	115	, i	- 45	
20	190	-174	14	105	205	0	165	164	16	220	215	9	< 40	- 23
28	212	-186	14	100	200	1 10	105	104	10	320	010		271	-279
30	268	299	16	522	- 579	10	134	-120	18	261	-237	13	289	306
32	453	-456	18	193	193	12	349	371	20	488	-493	15	415	-416
04	479	405	20	1309	-1375	14	268	-261	22	298	280	10	907	940
34	4/3	480		001	109	16	444	449	94	200	196	17	327	348
36	342	-347	22	201	192	10	444	440	24	200	- 180	19	208	-200
38	334	335	24	622	601	18	402	- 423	26	133	135	21	460	446
40	- 55	- 7	26	201	-200	20	641	-692	28	< 63	- 37	92	1006	1001
+0	140		98	256	256	29	< 55	79	30	< 69	- 10	20	1000	1001
42	143	119	20	100	100	1 22	000	000	00	~ 04	10	25	757	-768
44	781	767	30	160	- 136	24	308	280	32	80	77	27	< 40	74
46	218	206	32	$<\!52$	40	26	201	-197	34	95	-93	90	157	- 151
40	701	200	34	67	-38	28	290	282	36	119	117		100	180
48	101	- 111	90	~ = =	_ 04	- <u>-</u>	156	156	90		00	31	190	- 178
50	99	-36	30	< 00	- 24	30	190	- 190	00	91	- 00	33	199	191
52	105	-38	38	93	-62	32	93	90	40	< 55	35	35	326	-319
54	187	-179	40	< 59	47	34	$<\!62$	42	42	< 52	22	27	964	957
54	101	- 170	19	155	-128	36	157	164	44	< 50	- 18	. 01	204	201
56	142	157	1 14	001	070	00	101	019		< 00 20	10	39	194	- 192
58	216	-208	44	921	958	38	205	213	40	98	02	41	< 53	51
60	194	178	46	231	- 219	40	408	-405	48	43	-55	43	98	88
60	1=0	149	48	166	-141	42	330	320	50	< 39	35	45	100	100
02	109		50	- 62	_ 18	44	190	122	59	- 24	19	40	198	- 180
64	94	89	50	< 00	- 10	TT 10	129	100	54	\ J #	15	47	204	219
66	< 52	-22	52	144	145	46	< 62	31	. 54	$<\!26$	- 41	49	195	-192
68	< 48	- 32	54	$<\!62$	54	48	< 61	-12	i .			51	122	116
70	71	27	56	180	-152	50	< 59	- 39				20	. 50	110
70	/1	57	59	- 50	61	59	- 57	46		80l		55	< 59	- 48
72	< 38	36	00	100	100	1 24			- 46	~ 97	-15	55	< 59	-26
74	89	56	60	120	- 103	54	12	- 60	14		65	57	102	84
			62	< 53	0	56	< 51	13	-44	04	05	59	84	-90
	0.01		64	83	-66	58	< 47	0	- 42	83	- 87	61	107	109
	20l		66	57	-51	60	85	-73	- 40	99	97	01	107	103
-74	< 30	-13	60	006	200	69	~ 90	49	- 38	114	- 97	63	57	- 45
79	911	204	00	230	209	02	< 30	40	26	65	59	, 65	49	49
- 12	211	201	1 70	< 35	- 19	04	277	- 265	0	-00		67	97	107
-70	84	-70							-34	72	-53	60	01	106
-68	185	- 161							-32	106	-98	03	51	- 100
- 66	126	117		40l			60l			994	199	i 71	86	-78
- 00	105	141	70	107	114	60	- 00	90	. 00	221	100	73	< 29	õ
- 04	120	-141	- 70	107	-114	- 02	< 28	30	- 28	84	70			
-62	119	122	-68	39	-35	-60	< 35	-53	-26	89	-78			
-60	96	-90	-66	< 42	-4	-58	< 40	40	-24	< 53	-4	i	111	
- 58	< 62	71	-64	- 17	_ 24	- 56	- 11	_41	_ 99	- 54	- 26	. 79	- 97	14
	. 02	11	-04		- 0+	50		- 11	- 22	\J	- 20	- 13	< 31	
- 50	< 03	-1	- 62	< 50	-z	- 54	<41	13	-20	< ə5	10	-71	87	67
-54	< 63	-12	-60	< 54	2	-52	$<\!50$	0	- 18	< 55	-14	-69	145	122
-52	< 63	53	-58	< 56	-41	-50	< 53	- 46	-16	< 56	7	-67	131	-143
_ 50	157	- 117	_ 56	65	82	_18	- 55	20	14	- 56	_ 19	_ 65	117	100
- 30	101	- 117	50		00	- +0	\ 00	33	1 14	< 50	- 12	- 05	117	129
- 48	055	- 679	- 54	75	- 89	46	< 57	- 51	-12	< 57	- 16	-63	95	-104
-46	241	228	-52	205	214	-44	< 59	22	-10	< 57	-15	-61	77	78
- 44	332	320	50	250	- 231	- 42	< 60	27	- 8	121	- 124	- 50	- 57	17
40	~ = 0	20	40	101	100	_ 40	< 00 Ω=	100		100	195		~ 57	17
- 42	< 00	- 00	-48	191	- 190	-40	90	- 100	- o	133	130	- 57	< 58	-61
-40	377	354	-46	116	95	- 38	125	132	-4	< 57	40	-55	215	223
- 38	157	-139	_44	< 63	- 42	- 36	202	- 201		< 57	- 33	_ 59	175	- 109
90	000	900	10	100	07	64	100	107		~		- 00	110	- 192
- 30	499	209	-42	122	81	- 34	192	187	0	< 57	14	- 51	337	345
-34	< 51	49	-40	< 62	- 9	-32	215	-208	2	< 57	8	-49	< 59	12
-32	92	71	- 38	< 61	-2	-30	306	284	4	< 56	-50	-47	468	-475
-30	240	243	- 36	139	137	- 28	488	484	6	< 56	60	-45	481	- 489
_ 90	199	05	_ 24	07	_ 00	_ 96	150	440	0	07	00	40	360	100
- 40	140	30	- 34	91	- 00	- 20	404	440		01	- 00	-43	200	201
-26	124	-77	- 32	297	275	24	< 63	15	10	< 54	68	41	$<\!54$	- 48
-24	1136	-1177	-30	$<\!56$	- 13	-22	130	-122	12	94	-71	- 39	$<\!52$	32
-22	190	-186	- 28	611	641	-20	< 62	- 7	14	128	93	- 37	134	119
_ 20	710	759	96	256	_ 986	19	- 69		16		107	_ 9#	- 10	110
- 40	1000	104	- 20	200	200	- 10	< 04 . 02	0	10	201	191	30	<u>40</u>	3
- 18	1036	- 1094	-24	832	- 898	- 16	< 62	- 66	18	Z4 5	- 226	- 33	124	104
-16	1143	1253	-22	591	600	-14	$<\!62$	42	20	< 49	18	-31	186	188
-14	1043	-1136	-20	646	-680	-12	< 61	44	22	< 47	- 42	- 29	< 42	- 30
_19	500	644	1	470	488	- 10	- A1		91	- 15	20	_ 97	179	469
- 14	000	044	- 10	エ 13	+00	- 10	< UI	-0	44	< 40	20	- 41	+14	403

Table 1. Observed and calculated structure factors $\times 10$

508

L. H. JENSEN AND E. C. LINGAFELTER

.

1

					Tabl	e 1 (co	ont.)						
l	F_{o}	F_{c}	$l F_o$	F_{c}	l	Fo	F_{c}	1	F_{o}	F_{c}	l	F_{o}	F_{c}
-25	289	274	-35 < 50	-1	-41	< 57	- 40	-43	75	-72	-37	< 59	-45
-23	441	-434	- 33 133	141	- 39	$<\!56$	-38	-41	< 59	8	- 35	< 59	-26
-21	192	-184	-31 268	-274	-37	58	54	- 39	< 58	47	- 33	69	- 48
-19	80	-85	-29 268	282	-35	110	- 130	-37	88	-80	-31	101	-82
-17	143	137	-27 544	- 590	- 33	142	157	- 35	113	130	- 29	207	-163
-10	302	- 315	-25 $221-29$ 517	194	- 31	110	- 120	- 33	103	- 94	-27	094 ~ 57	074
- 13	558	- 588	-23 517 -21 < 38	40	-29 -27	480	446	-31 -29	< 53 < 53	100	-20	< 07 Q2	- 33 - 79
-9	541	592	-19 204	201	-25	471	464	-23 -27	229	-273°	-21	< 52	- 12
-7	898	-997	-17 < 35	14	-23	589	-549	-25	< 51	- 32	-19	73	-61
-5	664	732	-15 53	51	-21	< 43	31	-23	99	117	-17	< 53	44
3	1843	-2281	-13 104	100	-19	< 42	-32	-21	< 49	-19	- 15	97	-79
-1	1251	-1488	-11 39	-42	-17	226	-210	-19	121	123	-13	87	84
1	1313	1539	-9 55	43	- 15	286	263	-17	73	56	-11	84	- 83
0 5	240	810 861	-7 48 -5 197	- 159	-13	383 480	- 393	-15	- 16	107	-97	80 96	90
7	243	246	-3 104	- 192	-9	425	-422	-13	< 46	-5	-5	92	40 81
9	530	573	-1 600	-671	-7	441	442	-9	170	188	-3	319	-303
11	268	-242	1 472	488	-5	173	-172	-7	105	- 84	-1	73	- 87
13	652	695	3 < 29	-7	- 3	604	-596	- 5	332	312	1	< 52	31
15	325	-320	5 161	-186	-1	579	-569	- 3	489	-541	3	< 52	-30
17	423	428	7 387	415	1	372	366	-1	145	-155	5	68	-40
19	< 34	-14	9 471	-521	3	59	32		276	254	7	103	75
21	307 703	-340 -504		403	57	< 38 999	9 107	35	290	303	9	149	- 146
$\frac{25}{25}$	308	266		-337 -41	9	< 39	- 38	7	320	- 198	13	115	194 194
27	163	-149	17 112	98	11	119	121	9	77	62	15	93	100
29	178	173	19 605	-611	13	219	175	11	127	105	17	319	337
31	232	-208	21 906	956	15	< 42	-23	13	244	-269	19	201	209
33	153	145	23 115	76	17	433	417	15	293	308	21	353	-363
35	199	- 197	25 61	- 49	19	251	230	17	410	-465	23	142	-133
37	< 51 79	2 74	27 98	132	21	614 994	- 577	19	103	92	25	134	147
39 41	236	74	29 293	- 272	25	224 ~ 49	- 200	21	147	190	27	234 204	-241 -214
43	198	-207	33 310	-287	27	161	155	25	183	185	31	175	-178
45	328	311	35 153	155	29	250	-243	27	190	-181	33	122	116
47	718	725	37 103	-73	31	319	316	29	192	196	35	< 59	-52
49	329	-370	3 9 110	- 91	33	280	-285	31	115	-116	37	< 58	16
51	226	227	41 99	117	35	235	239	33	56	47	39	< 58	41
03 55	129 ~ 58	- 115	43 209	- 238	37	160	- 105	35	< 59 114	43	41	125	- 150
57	< 57	- 8 16	$45 \ 257$ $47 \ < 59$	-41	41	165	-148	39	127	- 102 122	45	50 78	- 24 68
59	105	-72	49 < 59	ĩ	43	316	-298	41	205	-206	47	< 51	4
61	< 53	22	51 < 59	38	45	395	405	43	< 59	-41	49	< 48	30
63	< 50	- 43	53 71	-72	47	< 59	19	45	117	100	51	$<\!45$	-8
65	66	-43	55 65	57	49	88	62	47	< 57	- 5	53	< 42	32
67	73	- 57	57 64	50	51	< 57	25	49	< 55	30	55	< 38	-6
09 71	< 39 69	54	59 < 55 61 < 50	12	55	< 50	21	52	< 53 < 51	-0	50	< 40	29
••	02	01	63 < 47	- 39	57	< 51	29	55	< 48	7	00	< 51	10
	017		65 94	87	59	< 48	-15	57	< 44	- 18			
70	211	40	67 80	63	61	$<\!45$	38	59	< 40	11		611	
-73	< 34	42	69 70	- 59	63	< 41	-5	61	< 36	- 19	- 59	< 39	- 44
-69	40	-100 -57			65	100	-72	63	< 30	-21	- 57	< 37	- 19
67	83	99	311		67	193	-177				-53	< 44	-10
-65	65	-80	-71 278	268					51l		-51	118	151
-63	91	100	-69 <36	61		41l		-65	< 36	40	-49	<49	-29
-61	< 54	52	-67 < 41	46	-69	34	42	-63	< 35	-37	-47	< 51	-35
- 59	< 56	34	-65 < 45	-42	-67	50	53	-61	< 40	31	- 45	< 53	5
-57 -55	< 38 84	00 - 68	-61 < 51	11 6	- 63	< 40	30 17	- 59	< 43	- 31	-43	< 55 < 56	- 34
-53	143	00]41	-59 < 54	- 35	-61	< 47	-16	-57	< 49	- 25	- 41	< 50 < 57	- 22
-51	81	-92	-57 < 56	42	- 59	< 50	39	-53	< 52	$\frac{10}{12}$	-37	< 58	-3
-49	171	168	-55 < 58	-16	-57	58	-54	-51	70	87	- 35	< 58	4
-47	178	-156	-53 <59	21	- 55	82	76	- 49	< 56	17	- 33	< 59	-17
- 45	123	- 95	-51 147	168	- 53	< 57	- 53	-47	80	- 83	-31	< 59	35
-43	163	170	-49 97	111	-51	134	148	-45	< 58	-19	-29	< 59	-5
41	198	100	-47 331 -45 07	- 327	- 49	101		-43	< 59	-7	-27	< 64 - 61	- 46
-37	101	-90	-43 < 58	- 3	- 45	91	155 78	-39	< 59	- 33 6	-23	< 04 99	- 71
				-			-			-			

510

REFINEMENT OF THE STRUCTURE OF *n*-NONANOIC ACID HYDRAZIDE

					Tab	ole 1 (a	cont.)						
l	F_o	F_{c}	l Fo	F_{c}	1	F_{o}	F_{c}	l	F_o	F_{c}	ı l	F_{o}	Fc
-21	90	77	9 < 58	43	- 9	< 37	- 40	- 36	89	-93	-42	< 54	-22
19	< 59	-45		- 85	-7	87	-75	- 34	79	87	-40	< 53	-19
-17	< 59 < 58	9 50	13 < 58		-5	< 37	-5	-32	109	113	-38	90	-74
-13	56	-82	15 < 57	80	-3	- 26	69 20	-30	180	-157	-36	< 50	10
-11	117	133	19 < 56	17	1	< 30	- 39 34	-28 -26	311	380 267	- 34	64	- 51
-9	102	- 89	21 183	-175	3	< 35	4	$-20 \\ -24$	593	-588	-32 -30	122	- 109
-7	205	237	23 59	72	5	< 37	-20	-22	< 40	22	-28	384	- 391
-5	78	65	25 80	- 88	7	< 33	46	-20	200	166	- 26	381	388
3	290	-312	27 < 51	34	9	40	-51	-18	252	257	-24	247	268
i	110	-129	29 < 50 31 < 48	-20	11	< 37	16	-16	236	-256	-22	130	153
3	< 58	49	33 < 46	-10^{-1}	15	< 30	- 55	-14 -12	470	481	-20	183	- 192
5	< 58	11	35 <43	-6				-10	284	263	-16	144	- 147
7	84	-83	37 < 41	-30		02l		- 8	94	78	-14	132	114
9	134	134	39 < 38	-8	0	1540	-1770	-6	245	-250	-12	79	-96
13	132	- 150 145	41 < 34 43 < 36	25	2	48	5	-4	547	556	-10	108	87
15	82	- 82	±0 < 00	20	4	181	154	-2	515 196	- 527		< 31	-6
17	< 59	-22	81	1	0	170	203	2	313	-320	-0	< 30 431	34 415
19	< 59	48	-43 < 35	11	10	363	- 158	4	181	183	-2	287	-294
21	< 59	-71	-41 < 32	12	12	241	-200	6	116	96	0	478	-436
$\frac{23}{25}$	90 92	90 	-39 < 36	14	14	252	240	8	205	-213	2	310	-322
27	< 52	42	-37 < 38	8	16	< 35	26	10	299	308	4	313	334
29	$<\!58$	5	-35 < 40	-4	18	< 38 225	44	14	240 98	- 473	8	448	- 404
31	< 57	-29	-33 < 42	-8	20	240	- 223	16	104	-124	10	271	-287
33	61	63	-29 < 45	37	24	303	299	18	131	-123	12	121	131
35	59 59	- 44	-27 64	68	26	124	-135	20	459	- 457	14	< 37	5
39	< 51	00 15	-25 < 48	-43	28	107	111	22	148	- 131	16	54	- 28
41	131	-135	-23 < 48	19	30	70	-70	24	797	762	18	144	149
43	<46	-16	-21 < 50	12	32	64 02	76	20	< 44 60	- 02 47	20	421	457
45	< 43	38	-19 < 50 -17 = 56	- 39	36	119	- 102	30	114	115	24	185	-217
47	< 40	-4	-15 56	-62	38	176	-166	32	122	-115	26	<45	-42
49 51	< 30	12	-13 < 52	41	40	106	101	34	109	116	28	<46	- 6
	100	U	-11 < 52	-33	42	151	-157	36	94	-93	30	< 48	-22
	717		-9 < 52	-17	44	267	- 284	38 40	00 64	- 59	32	< 51 119	- 34
59	111	15	-7 150 -5 69	-72	40	362	-159 404	42	< 54	40	36	112	-127
-51	< 30 55	- 15 40	-3 < 52	- 13	50	85	66	44	132	-114	38	160	172
-49	< 37	-14	-1 < 52	-19	52	$<\!55$	-58	46	$<\!55$	11	40	122	-127
-47	42	41	1 < 52	-10	54	163	167	48	61	45	42	98	125
-45	66	-55	3 < 51	33	56	129	- 132	50 52	< 55 < 54	5 15	44	420	- 425
-43	68	60 50	5 < 51 7 < 50	-48	58 60	80	-70	54	< 53	-39	40	< 55 137	145
- 41	48 50	- 00 36	9 < 50	-50	62	<46	39	56	< 51	42	50	< 54	- 33
-37	< 51	-10^{-10}	11 < 49	30	64	$<\!42$	- 3	58	70	-73	52	65	71
-35	$<\!52$	-41	13 < 48	-12	66	< 39	-7	60	< 47	35	54	< 51	12
- 33	< 54	58	15 < 47	-22	68	< 41	-4	64	< 44 < 40	42	50	<49 51	49
- 31	300	-286	17 50 19 -44	57	10	< 94	12	66	< 36	-5	60	< 44	42 4
-29 -27	00 218	202	21 < 43	- 29		127		68	182	161	62	< 40	16
-25	< 57	48	23 < 41	ŏ	- 70	67	69	70	70	71	64	87	83
-23	58	-61	25 < 39	-15	-68	153	-138				66	< 31	- 33
-21	$<\!58$	56	27 < 37	13	-66	< 39	-6		22l				
-19	< 58	-42	29 < 34	-17	-64	<43	32	-70	57	67		32l	
-17	< 58	19	31 < 37 33 < 31	7	-62	64	-54	- 68	77	72	-68	37	- 45
-13	< 59 < 59	-19	00 \ 01	0	-60	58	61	-66	62	-52	- 66	< 34	3
-11	< 59	21	91	ļ	- 56	40 63	49 56	- 64	78	85 _ 04	- 64	< 38	-32
-9	< 59	2	-27 76	54	- 54	< 54	-26	- 60	90 94	- 94 97	- 62	< 42 45	16 46
$-\frac{7}{2}$	< 59	-103	-25 < 35	-18	-52	< 55	52	- 58	90	- 84	-58	< 47	
-5	74 ~ 50	13	-23 < 37	6	- 50	< 55	-21	-56	$<\!56$	42	-56	88	-78
3 1	< 59 < 59	30 _ 9	-21 < 40	- 5 5	-48	132	122	-54	< 53	-9	- 54	71	68
î	< 59	15	-17 < 43	- J - J	-40	< 55 143	- 196	-52	< 54 29	- 45	-52	112	-118
3	< 59	-19	-15 < 35	19	-42	120	121	- 48	0∠ 260	00 259	-50 -48	259	87 995
5	< 59	31	-13 < 36	-20	-40	132	-134	-46	74	-72	-46	140	138
7	79	-62	-11 71	76	- 38	162	165	-44	159	-141	-44	< 55	41

L. H. JENSEN AND E. C. LINGAFELTER

					Tab	le 1 (c	ont.)						
l	F_{o}	F_{c}	l F _o	F_{c}	<i>l</i>	Fo	F _c	l	F_o	F_{c}	1	F_o	F_{c}
-42	55	-73	-38 < 55	22	-26	< 57	17	-2	< 55	17	34	< 35	-37
-40	< 54	19	-36 < 55	12	-24	157	-166	0	60	-42	36	< 32	0
-38	< 53	21	-34 90	-77	-22	116	132		< 55	33	38	< 35	23
-36	96 157	- 80	-32 < 53	58 149	-20	130	-130	4	< 55	-28	40	92	102
-34 -32	144	-139	-28 222	-205	-16	- 52	-31	8	< 55	19		891	
-30	184	203	-26 138	125	-14	< 52	-43	10	< 55	-41	_ 38	< 30	20
-28	136	136	-24 298	300	-12	< 52	35	12	< 55	36	-36	< 35	32
-26	170	-171	-22 124	-115	10	$<\!52$	-54	14	139	- 119	-34	38	45
-24	218	-225	-20 122	126	-8	< 51	-41		112	-103	-32	33	21
- 22	163	- 174	-18 97	- 92	-6	130	142	18	62 977	74	- 30	77	-67
-20	200 331	304 341	-10 95 -14 101	- 92	-4	300	340 	20	158	295 146	-28	67	-71
-16	308	318	-12 101	101		183	-185	24	< 53	- 140	-26	62	64
-14	163	- 171	-10 80	-79	2	94	104	26	< 52	-17	-24 -22	< 39	-6
-12	< 41	37	-8 58	63	4	128	-138	28	< 52	-29	-20	<41	21
-10	192	180	-6 51	22	6	68	65	30	< 50	27	-18	< 42	-24
-8	221	-208		177	8	< 52	- 38	32	<49	-23	-16	< 43	14
- 0 4	301 189	359 140	-2 < 49	-24 -945	10	< 53 < 53	3 95	34	<47	-1	-14	< 43	2
$-\frac{1}{2}$	< 39	35		105	12	< 53	-21	38	< 44	-25°	-12	< 44	- 3
ō	422	- 401	4 115	-118	16	121	106	40	< 41	5	-10	< 44 57	39 75
2	< 40	-1	6 <47	34	18	116	-121	42	< 39	-9	-6	79	-104
4	70	86	8 < 48	- 36	20	< 55	-41	44	< 35	-23	-4	< 44	-20
6	148	-166	10 < 48	-23	22	< 55	-38	46	< 32	17	-2	<44	- 3
10	184	178	12 72 14 < 48	- 61	24	75	70	48	< 32	- 26	0	< 44	19
10	92	-33 72	16 226	-225	20	69	- 07					< 44	-29
14	< 44	.2	18 264	248	30	< 55	-24		72l		4	< 43	43
16	$<\!45$	-6	20 208	191	32	$<\!54$	-12	-50	59	59	8	< 42	- 30
18	< 46	-14	22 87	69	34	77	61	-48	38	37	10	< 41	-6
20	465	- 507		- 225	36	66	-63	-40	< 32	-13	12	<40	15
22	100	128	20 117	-125	38	109	107	-42	< 38	24		< 39	-28
26	< 51	122	30 < 54	0	42	< 48	-28	-40	< 40	- 44	16	108	- 101
28	< 52	46	32 < 57	46	44	170	-175	-38	< 42	48	20	< 34	26
30	< 52	31	34 87	- 103	46	<44	26	-36	< 44	-40	22	< 32	-9
32	< 53	12	36 107	113	48	< 41	37	- 34	< 45	18	24	< 36	5
34	< 53		38 88	- 101	50	48	- 69	-30	< 48	-42	26	< 32	6
38	65	- 59	40 112	- 81	54	- 29	49	-28	< 49	-10^{-10}		0.07	
40	169	165	44 105	-104	01	~ 20	10	-26	< 50	-11		921	10
42	140	-116	46 < 51	-4		691		-24	< 50	49	- 10	- 74 - 90	- 49
44	165	-110	48 69	48	56	~ 94	9	- 22	< 51	- 39	-6	47	- 50
46	< 54	- 35	50 66	- 49	- 50	< 32	-4	-20 -18	< 52	- 14	-4	< 30	- 3
48 50	~ 52	/9 1	54 56		-52	< 36	36	-16	< 52	5	-2	< 29	1
$50 \\ 52$	< 52	-19	54 - 33	43	- 50	< 39	-38	-14	< 53	- l	0	$<\!28$	-16
54	63	68	58 < 33	-20	-48	< 42	44	-12	< 53	-15		0.97	
56	50	-68	60 < 33	15	-46	< 44	-33	-10	< 53	-20		031	-
58	39	50	1		- 44	< 40 < 18	18		140		; I 9	01	- 50
60 69	< 38	-36	52l		-42 -40	< 49	- 18	-4	141	128	. 5	132	- 130
64	< 33	-11 -54	-62 < 34	-47	-38	< 51	-14	-2^{-2}	85	- 96	7	213	186
•••		01	-60 47	53	- 36	< 52	42	0	< 53	32	9	166	-158
	191		-58 72	- 74	-34	67	-48	2	< 53	- 35	11	188	173
66	420	10	-56 < 39	34	-32	117	100	4	< 53	13	13	78	- 66
-64	< 31	19	-54 55 -52 147	- 45 - 156	- 30	200	- 181	8	< 52	- 14	10	94 ~ 96	83
- 62	< 36	15	-50 177	183	-26 - 26	$\frac{200}{172}$	158	10	< 52	-18	19	78	75
-60	< 40	- 9	-48 77	74	-24	72	76	12	< 51	7	21	292	-283
-58	<43	10	-46 < 51	-9	-22	< 55	11	14	< 51	- 1	23	651	-667
- 56	< 46	21	-44 < 52	-15	-20	< 55	-2	16	< 50	-52	25	413	417
54 59	<48 70	19 	-42 < 53	- 20	-18	< 55 1 Q	55 _ 64	18	<49 ~19	57	27	180	180
-50	111	101	-38 82	- 79	14	40 55	- 04 97	20	< 4 0 < 47	- 10	29	200	- 70
4 8	< 56	45	-36 86	80	-12	56 - 56	-71	$\frac{22}{24}$	< 45	-34	33	127	-135
 4 6	< 54	33	-34 83	-90	-10	56	70	26	<44	25	35	129	138
-44	97	-99	-32 < 55	47	-8	< 55	-16	28	< 42	-14	37	67	-61
-42	62	71	-30 < 55	26	-6	< 55	11	30	< 40	-16	39	< 43	12
40	80	- 69	- − 28 < 55	43	-4	< 55	<u>- 0</u>	32	< 38	17	- 41	40	49

						Tab	le 1 (c	ont.)						
l	F_{o}	F_{c}	<i>l</i>	F_{o}	F_{c}	l	Fo	Fc	l	F_{o}	F_{c}	i ı	F_{o}	F
43	97	-101	47	102	-136	53	< 37	-8		43 <i>l</i>	•	-37	< 41	- 0
45	124	122	49	$<\!42$	62	55	< 34	3 2	- 59	< 41	10	-35	< 42	i
47	103	-128	51	57	-51	57	< 32	-5	- 57	< 28	20	- 33	< 43	37
49	89	91	53	93	77	59	$<\!28$	18	- 55	45	-51	-31	<43	-5
51	10	- 46	55	89	-72	61	<41	-1	- 53	61	83	-29	97	99
55 55	< 38	32	57	90 60	86				-51	219	-242	-27	259	-265
57	< 36	-18^{2}	61	09 55	64		33l		- 49	< 37	-34	- 25	< 44	24
59	< 34	26	63	< 34	- 27	- 63	< 36	21	-47	201	203	-23	< 44	45
61	57	-48		.01	- 21	-61	< 37	4	- 45	< 40	-41	-21	55	-47
63	$<\!27$	23		201		- 59	45	- 38	-43	73	61	- 19	50	70
65	69	-63		231		- 57	61	69	- 41	< 42	31	-17 -15	< 44	- 49
			-65	< 25	44	- 55	79	-86	- 39	< 43	16	-13	< 44	33
	13l		-63	52	-61	- 53	73	70	- 35	81	-76	-11	66	- 68
- 65	< 39	0	- 61	< 3U	28	-51	53	- 69	-33	84	78	-9	72	77
-63	45	-30	- 57	< 35	-27 -16	-49	< 41 167	- 58	-31	135	-143	-7	65	- 67
-61	50	49	-55	< 38	- 10	-41	70	170	-29	61	68	- 5	< 43	-9
-59	68	-58	- 53	58	-62	-43	110	105	-27	122	110	-3	130	147
-57	4 6	44	-51	<41	18	-41	94	- 98	-25	112	112	-1	75	-73
-55	< 39	-33	- 49	173	-182	- 39	74	69	-23	154	-151		122	133
-53	< 40	-17	-47	253	263	-37	< 44	-32	-21	< 42	13	3	171	- 165
-51	< 42	3	-45	<44	15	- 35	< 44	15	- 19	< 42	-4	57	143	152
-49	105	-111	-43	55	-60	- 33	$<\!43$	8	-17	58	- 63	a a	~ 112	- 100
-47	180	206	-41	63	74	-31	$<\!43$	9	- 10	09	08 109	1	< 44	42
-40	108	188	- 39	118	-120	-29	< 42	-10	- 11	- 40	- 102	13	82	-81
-40	185	- 213	-31	88	85	-27	123	- 127	-9	86	-82	15	109	103
- 39	211	-220	- 30	- 19	-87	- 25	185	- 193	-7	81	- 79	17	212	-212
-37	146	149	-31	89		-23	243	244 75	-5	196	-158	19	< 44	-35
-35	101	- 98	-29	176	-173	-19	- 38	- 75 25	- 3	419	416	21	144	157
- 33	< 41	-22	-27	471	466	-17	111	117	— l	178	172	23	<43	- 40
-31	64	52	-25	62	76	-15	185	-171	1	225	-206	25	< 43	49
-29	142	-143	-23	274	-258	-13	221	232	3	105	115	27	< 42	-4
-27	< 37	11	-21	174	-167	-11	193	-185	. 5	114	- 99	29	< 42 57	- 26
- 25	211	-228	- 19	< 32	18	-9	113	123	1 1	< 41	-12	33	70	- 77
- 23	177 ~ 2 0	211	-17	< 31	-8	-7	< 34	-28	- 9 - 11	105	40 	35	79	- 11
-21 -19	< 30	- 54	-15	104	- 99	-5	99	-71	13	130	141	37	70	-69
-17	116	104	-13	130	147	-3	258	228	15	133	-143	39	62	51
-15	44	-5	-9	199	198	- 1	97	80 147	17	220	228	41	< 33	-8
-13	$\bar{77}$	-82	-7	175	-177	1 2	100	- 147	19	<43	37	43	< 31	34
-11	215	229	-5	69	64	5	212	-205	21	202	-206	45	< 28	-30
-9	310	-307	- 3	204	212	7	180	196	23	<44	15	47	< 35	-26
-7	383	376	-1	244	256	9	178	- 183	25	70	-69	49	< 34	16
-5	334	-299	1	169	-177	11	87	79	27	59	68			
-3	430	467	3	157	-164	13	< 37	-16	29	90	- 87		63/	
-1	389	383	5	136	139	15	128	-135	99	71	68 70	- 49	37	41
1 2	480	-484		185	- 206	17	99	88	35	48	- 10	-47	44	48
5	106	- 129	9	140	147	19	347	- 327	37	< 42	-11	-45	< 40	17
7	69	- 75	19	1 I 66	- 10	21	399	389	39	< 41	-49	-43	< 31	2
9	64	23	15	76	79	23	- 49	- 38	41	187	187	-41	< 33	14
11	130	-130	17	< 33		20	81	65	43	100	96	-37	< 36	-6
13	48	11	19	305	316	29	95	-86	45	139	-134	- 30	< 31	28
15	$<\!27$	-13	21	479	-491	31	72	56	47	63	-59	- 33	< 30	
17	152	-172	23	277	-254	33	< 44	-8	49	< 31	44	_ 20	< 40	
19	150	150	25	230	216	35	64	-58	51	55	-65	_ 27	< 41	- 31
21	169	-135	27	117	-130	37	106	102	53	< 35	37	-25	< 41	_47
23	415	437	29	150	152	39	123	-122	55	< 32	- 9	-23	< 42	33
25	340	- 329	31	69	- 88	41	143	137				-21	< 42	-27
27	223		33	106	88	43	< 42	-6		53l		- 19	$<\!42$	-•
29 31	01 71	- 60	35	< 43	-32	45	65	-67	-55	< 39	19	-17	< 43	19
33	179	- 09 169	37	< 44	29	47	< 39	-27	-53	$<\!27$	1	-15	< 43	-17
35	186	180	39 41	< 44 ~ 11	29	· 49	< 37	-40	-51	< 30	-40	-13	< 43	3 9
37	179	172	43	161	17	51 	03 04	57	-49	< 32	20	-11	< 43	-41
39	84	-76	45	177	183	03 55	04 76	- 70	-47	< 34	1	$-\frac{9}{-1}$	< 43	43
41	< 44	58	47	< 42	-41	57	70 74	00	-45	< 36	41	-7	246	-231
43	149	153	49	< 40	8	59	< 35	- 02	-43	< 38 - 20	- 24 14	-5	< 43	- 63
45	203	-220	51	< 39	13		100		- 39	< 39 < 40	9		31Z	309
					-				00	~ 10	- 4	- 1	< +0	- 40

L. H. JENSEN AND E. C. LINGAFELTER

					Tab	le 1 (co	ont.)						
l	F_{o}	F _c	$l F_o$	Fc	l	F_{o}	F _c	l	F_{o}	F_c	l	F_o	F_c
1	<43	15	-9 < 47	19	-8	48	- 36	14	72	81	40	118	- 122
3	<43	31	-7 177	-146	6	47	-46	16	< 38	-10	42	< 34 204	210
5	< 43	-59	-5 < 47	56 27	4	< 24 68	-12 -60	20	< 39 58	-20 -55	46	76	-61
7	52 60	- 79	-3 < 47 -1 < 47	-6	-2	181	227	22	<41	-17	48	< 38	38
11	57	-73 - 72	1 < 46	14	2	49	59	24	53	50	50	< 38	27
13	71	-72	3 < 45	-21	4	192	-186	26	82	-73			
15	51	40	5 < 44	19	6	225	214	28	89 79	69 		44l	
17	<41	-22	7 < 52 0 < 40	-27 33	10	$\frac{254}{170}$		30	56	$-05 \\ 56$	-50	< 40	- 39
19 21	< 40	$\frac{-20}{32}$	11 < 46	-27	10 12	81	-79	34	45	-30	-48 -46	< 39 59	-59
$\overline{23}$	< 39	-29	13 < 42	49	14	< 32	- 38	36	< 42	19	-44	98	77
25	< 38	36	0.41		16	172	157	38	< 41 < 40	4 4	-42	67	-55
27	< 37	-25		101	18 20	$\frac{204}{542}$	- 104	40	< 39	5	-40	39	32
29 31	< 35	-20	$ \begin{array}{ccc} 0 & 72 \\ 2 & 72 \end{array} $	101	$\frac{10}{22}$	< 39	- 77	44	< 38	21	- 38	< 38 46	-41^{2}
33	< 32	-4		-58	24	474	-475	46	< 34	-3	$-30 \\ -34$	1 0 76	68
35	< 30	-6	6 < 31	-48	26	136	115	48	< 32	-1	-32	94	-87
37	49	-57	8 102	105	28 30	126 64	-118	50 52	70	- 48	-30	105	90
39 41	31 160	40 167	10 172 100	-166	32	<43	5	54	61	-64	-28	< 42	- 30 9
**	100		12 199	-164	34	66	-58				-20 -24	< 43	14
	73l		16 125	90	36	118	112		34l		-22	< 43	-30
-41	< 32	15	18 < 33	-28	38	138		- 54	< 39	-23	-20	< 43	26
-39	< 39	-4	20 130	-118	40	97	-94	-52	75	67	-18	45 - 13	-28 -6
- 37	< 36	-16	22 142 24 168	-177	44	120	125	-50	< 30	-29	-10 -14	< 47	19
- 35	<28	30	26 111	93	46	< 38	28	-48 -46	229	- 234	-12	73	-72
-31	88	108	28 83	-80	48	99		-40 -44	< 38	37	-10	94	88
-29	< 32	-25	30 106	98	50	80 78	-74 ·	-42	55	-50	-8	138	- 135
-27	102	-105	32 79	-81 82	54	< 38	37	-40	121	113	-0	123	- 89
- 25	< 34	4	36 64	- 49	56	<38	3	- 38	111	- 107	-2	< 42	25
- 23 21	< 30 < 36	-26	38 <43	33				-30 -34	58	93 	0	68	66
-19	41	44	40 < 42	1		24l		-32	50	-42	2	59	-51
-17	37	-60	42 < 42	-9	- 56	< 40	-7	- 30	84	64	4	68 67	- 60 - 60
-15	41	56	44 75 46 < 39	-21	- 54	< 39	14	-28	291	-302	8	57	03 73
-13	< 38	-52	48 < 38	-20	-52	45 51	- 43	-20 -24	245 163	232	10	70	-63
-9	< 38	-9	50 < 34	-24	$-30 \\ -48$	63	- 74	-24 -22	< 42	- 36	12	69	67
-7	< 38	33	52 < 32	3	-46	57	50	-20	$<\!42$	- 8		65 76	
- 5	< 38	45	54 < 42 56 < 44	- 14	-44	< 39	-19	-18	<41	-26	10	70 52	-40
3	77		00 11	••	-42	<41	38	-16	< 41	-11 27	20	< 43	3
1	60	-75	141		-38	< 42	13	-12	52	-62	22	< 42	13
. 3	< 38	38	-58 68	70	- 36	<43	12	-10	72	71	24	< 42	- 30
5	< 37	-4	-56 92	-92	- 34	49	-39	-8	99	- 92	20	< 41	-15
7	< 37	- 18	-54 80	75	- 32	83	88		< 39 268	_ 290	30	< 39	-4
11	< 36	-19	-52 63 -50 < 34	57	$-30 \\ -28$	202	-103 193	-2	< 39	23	32	< 38	6
13	< 35	28	-48 57	-67	-26	180	-175	0	379	393	34	< 36	- 16
15	< 34	31	-46 65	-67	-24	61	55	2	247	-229	30	< 34 < 33	-19
17	140	158		190	-22	$< 40_{50}$	- 36	· 4	188	188	40	< 31	29
19 21	< 32	30 22	-42 138	129 94	-20 -18	50 57	- 35 47	i 8	41	-32	42	< 40	-6
$23^{}$	< 30	21	-38 < 43	-25	-16	82	- 69	: 10	98	95	. 44	< 42	-4
25	<28	6	-36 67	-55	-14	59	48	12	173	-171	i	541	
27	< 36	-3	-34 92	79	-12	36	-26	14	142	138	_46	85	99
29 31	< 40	- 19 19	-32 165	- 154 84	- 10	< 33 46	- 12	10	< 42	-132 37	-44	53	-62
		- •	-28 140	-144	-6	86	-86	20	376	403	-42	54	61
	83l		-26 < 40	-20	-4	76	105	22	267	-222	-40	< 30	
-25	< 39	31	-24 643	659	-2	83	76	24	< 43	- 3	- 38 - 36	< 32 < 33	4 35
-23	< 44	-12	-22 265	- 240 - 88	. 0	131	101 60	20	< 43	- 02	- 34	< 35	-40
-21 -19	< 48 < 51	- 10 29	-20 73 -18 < 39	-35 -25	4	134	-126	30	< 42	$2\overline{2}$	-32	47	53
-17	< 43	-33	-16 115	-111	6	175	176	32	90	- 85	-30	51	-50
-15	< 44	40	-14 105	84	8	196	-184	34	103	95 19=	-28	66 75	- 61 76
-13	< 46	-19	-12 132	-121	10	172	181	36 20	124 84	- 125 75	-20 -24	< 40	7
-11	< 46	38	10 65	99	12	119	- 144	90	01	10	~~~~		,

REFINEMENT	OF	THE	STRUCTURE	OF	<i>n</i> -NONANOIC	ACID	HYDRAZIDE
			Table 1	(con	et.)		

							•	•						
l	F_o	F_{c}	l	F_o	F_{c}	l	F_{o}	F_{c}	l	F_{o}	F_{c}	l	F_o	F_c
-22	<41	18	12	$<\!46$	2	-34	<44	-19	0	< 38	26	-20	51	-63
-20	<41	0	14	49	49	- 32	<40	8	2	< 38	2	-18	52	59
-18	< 46	-36	16	158	-149	- 30	$<\!42$	24	4	< 38	14	-16	54	-56
-16	72	70	18	159	170	- 28	< 31	5	6	< 36	33	14	$<\!45$	35
-14	86	-80	20	< 39	-36	- 26	< 32	17	8	< 36	-37	-12	< 38	4
-12	95	111	22	54	52	-24	47	-47	10	49	42	-10	< 38	-2
-10	50	· — 71	24	49	-48	-22	45	31	12	47	-29	-8	155	146
-8	105	114	26	< 36	- 9	- 20	< 35	-16	14	< 34	31	-6	156	-163
-6	$<\!54$	-97	28	48	40	- 18	< 36	-11	16	< 33	9	-4	100	- 100
-4	360	-363	30	53	-55	- 16	39	36	18	< 32	-18	-2	100	98
-2	185	223	32	60	56	- 14	49	-66	20	< 31	- 14	0	58	-49
0	< 47	52	34	<41	-40	-12	70	74	: 22	$<\!42$	- 3	2	< 38	65
2	< 47	-29	36	$<\!45$	6	-10	70	84	24	< 39	6	4	< 45	-39
4	106	111	38	< 38	-6	- 8	< 38	43	26	< 44	4	6	<44	25
6	115	-102				- 6	< 38	-35	1 28	< 38	-15	8	< 42	-1
8	108	102		64l		· - 4	< 38	1	•			10	< 39	-20
10	63	-60	-36	< 39	26	-2	< 38	-12		74l		12	< 34	40
									- 22	< 34	31			

of n-nonanoic acid hydrazide, Fig. 1, from threedimensional photometric X-ray diffraction data.

Experimental

The compound was prepared by the method of Sah as outlined by Kyame, Fisher & Bickford (1947). The product was purified by recrystallization from 95% ethanol. Crystals were grown from an ethanolwater solution by slow evaporation of the solvent. From the mass of ill-defined plates, a crystal was selected and cut to size and shape with a regular histological microtome fitted with a razor blade. A cylindrical crystal with axis coincident with b and diameter about 0.15 mm. was used to collect zero and upper level unidimensionally integrated Weissenberg data. The upper levels were scaled to the zero level from several a axis Weissenberg photographs of another crystal.

The crystals are monoclinic with the following unit cell parameters:

$$a = 7.44, b = 4.87, c = 58.73 \text{ Å}; \beta = 95^{\circ} 4'.$$

These parameters were determined from Weissenberg and oscillation photographs taken on a camera calibrated with NaCl (a = 5.639 Å). Remeasurement of d_{001} on a photograph with the NaCl pattern superimposed checked within 0.1%. It is reasonable, therefore, to expect errors in unit cell parameters not to exceed 0.3%.

Systematic extinctions (*hkl*, for k+l odd and *h0l*, for h odd) indicate space group Aa or A2/a. Statistical treatment of the h0l date of n-heptonoic acid hydrazide (Jensen & Lingafelter, 1953) by the method suggested by Howells, Philips & Rogers (1950) indicates that the space group is A2/a. This was assumed for n-nonanoic acid hydrazide and confirmed by the subsequent structure determination. With 8 molecules per cell the calculated density is 1.08 g.cm.⁻³. The observed value is 1.07 g.cm.-3.

Intensities were measured on unidimensionally integrated photographs with a recording microdensitometer by scanning at right angles to the direction of integration on the camera (Jensen, 1954). The area under the trace was taken as proportional to the integrated intensity. Statistical analysis of about two thousand measurements on other compounds by this method indicates an average mean deviation of about 2% in the F's due to the method of recording and measuring when observing 60-80% of the reflections for crystals of intermediate complexity.

In order to minimize systematic errors, great care was exercised in preparing the crystals and collecting the data. On each film, the range of intensity measurement was limited to assure operation on the linear response curve of the film used. Nevertheless, due to the difficulty of cutting really good cylindrical crystals for a axis photographs, errors in level-to-level scaling probably remain as the greatest single uncertainty.

On the zero through fourth level b axis Weissenberg photographs, 2104 reflections were accessible to $Cu K \alpha$ radiation. Of these, 1233 or 58.7% were observed.

Crystal disorder

Crystals of *n*-dodecanoic acid hydrazide were disordered in a way that could be explained as mistakes in the stacking of the molecular double layers (Jensen, 1956). No crystals of that compound were found which did not exhibit faulting although no extensive search was made. For *n*-nonanoic acid hydrazide, some crystals were obtained which were almost completely free of any disorder. It is to be expected that stacking faults would be less severe for the compounds with shorter chain lengths.

Refinement of the structure

The structure of *n*-heptanoic and *n*-octanoic acid hydrazide projected on (010) and *n*-nonanoic acid

	x/a	y/b	z/c	$U_{11} \times 10^2$	$\boldsymbol{U_{22}\times 10^2}$	$U_{33} \times 10^2$	$\boldsymbol{U_{12}\times 10^2}$	$U_{13} \times 10^2$	$\boldsymbol{U_{23}\times 10^2}$
0	0.6984	0.5727	0.2031	6.9 Å	3·3 Å	4·8 Å	0.00 Å	-0.03 Å	-0·33 Å
	0.7000	0.1435	0.2144	5.6	3.2	2.9	0.00	-0.16	0.00
	0.2052	0.9960	0.2345	6.2	4.2	3.5	0.00	-0.25	0.00
	0.4801	0.2209	0.0266	10.9	10.9	4.8	0.00	0.40	0.00
	0.4199	0.1856	0.0486	8.5	7.3	4.3	-0.31	0.37	0.00
C ₂	0.5150	0.2053	0.0701	6.5	5.6	3.9	-0.24	0.34	0.00
03 0	0.4510	0.1012	0.0020	6.1	5.3	3.8	-0.21	0.33	0.00
C ₄	0.5400	0.2004	0.1136	5.7	4.8	3.5	-0.24	0.31	0.00
C ₅	0.0499	0.1041	0.1356	5.5	4.5	4.4	-0.28	0.28	0.00
	0.4890	0.9159	0.1570	5.3	4.3	3.2	-0.28	0.27	0.00
0,	0.5805	0.1000	0.1788	5.9	4.2	3.0	-0.28	0.26	0.00
	0.0100	0.1999	0.1006	4.9	3.0	2.9	0.00	0.25	0.00
C ₉	0.6187	0.3199	0.0111	4.9	J U			_	
	0.4069	0.2085	0.0969						
H_2	0.4637	0.0191	0.0265						
н ₃	0.6239	0.2430	0.0486						
H4	0.2500	0.2320	0.0480			_			
H ₅	0.4236	-0.0190	0.0480						
H ₆	0.4956	0.2000	0.0701						
H ₇	0.6636	0.2750	0.0701						
H_8	0.3036	0.2285	0.0920						·
\mathbf{H}_{9}	0.4648	-0.0250	0.0920						
H_{10}	0.5260	0.5250	0.1136					_	
H ₁₁	0.7028	0.2725	0.1136				_		
H_{12}^{-}	0.3392	0.2420	0.1356	—					
$H_{13}^{}$	0.5028	-0.0290	0.1356		_	<u> </u>			
H_{14}	0.5784	0.5415	0.1570		_				
$H_{15}^{\prime\prime}$	0.7328	0.2745	0.1570						
H_{16}	0.3808	0.2525	0.1788						
H,,	0.5384	-0.0260	0.1788		·	_		_	
$\mathbf{H}_{19}^{\prime\prime}$	0.6850	-0.0750	0.2109	—					
H.	0.9220	0.2750	0.2305			—	—	_	
H_{20}^{19}	0.7280	0.3500	0.2420	—					

Table 2. Atomic parameters

hydrazide projected along [100] have already been reported (Jensen & Lingafelter, 1953). Beginning coordinates used in the present work were derived from the earlier results.

Table 3. Bond lengths and angles*

0.0	1.591 Å	$C_{r}-C_{r}-C_{r}$	113·1°
$C_1 - C_2$	1.590	$C_{1} - C_{2} - C_{3}$	113.0
$C_2 - C_3$	1.516	$C_{-}C_{-}C_{-}$	113.8
$C_3 - C_4$	1 = 00	$C_{3} C_{4} C_{5}$	113.7
$C_4 - C_5$	1-022	$C_{4}^{-}C_{5}^{-}C_{6}^{-}C$	112.8
$C_5 - C_6$	1.524	$C_5 - C_6 - C_7$	111.9
$C_6 - C_7$	1.525	$C_6 - C_7 - C_8$	111.9
C ₇ -C ₈	1.526	$C_7 - C_8 - C_9$	109.5
C ₈ C ₉	1.494	$C_{8} - C_{9} - U$	122.0
C ₉ –O	1.249	$C_8 - C_9 - N_1$	100.0
$C_{12} - N_1$	1.329	$C_{9}-N_{1}-N_{2}$	123.0
$N_1 - N_2$	1.415	$O - C_9 - N_1$	120.9
$N_1 - H_{18} \cdot \cdot \cdot O'$	2.896	N ₁ -H ₁₈ -O'	171.7
$N_{9}-H_{90}^{*}\cdots N_{9}^{\prime\prime}$	3.188	$N_2 - H_{20} - N_2''$	149.7
CH	1.235		
CH5	0.999		
C_H	0.959		
Č-H.	1.115		
CH.	1.112		
CH.	1.058		
CH.	1.065		
CH.	1.152		
C_H	1.114		
C_{6} -H	1.094		
C H	1.103		
07-1114	1.106		
0_{7} 11_{15}	1.059		
C ₈ -H ₁₆	1 1 1 1		
$C_8 - H_{17}$	1.111		

* Calculated from coordinates uncorrected for oscillation.

The projections of the structure on (010) and along [100] were first refined by F_o and ΔF syntheses (Cochran, 1951). By including H atoms and individual atom anisotropic thermal parameters, the reliability indices, R, were brought to 6.7% and 6.4% for 0kl and h0l reflections respectively.

Coordinates from the refinement in projection were used as the starting point for the refinement by three-dimensional syntheses. In the first such refinement cycle, H atoms were omitted in calculating F_c and individual atom isotropic thermal parameters were used. The thermal parameter for each atom was taken as equal to that for the minimum thermal motion for that atom as determined from the twodimensional data. For this calculation, R stood at 19.3%.

Three additional refinement cycles including H atoms and individual atom anisotropic thermal parameters brought R to 7.5% for the 1226 observed reflections considered not to suffer appreciably from secondary extinction. The ΔF synthesis from which final changes in the atomic parameters were taken is shown in Fig. 2. In Table 1, F_o and F_c are listed for the unique reflections within that part of the sphere of reflection examined. Final atomic parameters are listed in Table 2 and the bond lengths and angles derived from them in Table 3.

Coordinates for H_{1-17} were calculated on the basis of final coordinates for C_{1-8} . It was assumed that the bonds about each C atom are tetrahedrally arranged with a C-H bond length of 1·1 Å and that the chain is planar with H₁ lying in that plane. Coordinates for H₁₈₋₂₀ were taken from a ΔF synthesis showing the H atoms, Fig. 3. To minimize the influence of inaccuracies in the thermal parameters, only ΔF for reflections with $\sin \theta/\lambda < 0.48$ were used in calculating this synthesis. For the 1226 observed reflections not appreciably affected by secondary extinction, R =11.0% when H atoms are omitted.

Fig. 2. Composite ΔF synthesis from which final corrections were taken. Contour interval 0.05 e.Å⁻³. Positive contours solid, negative contours broken and zero contour omitted.

Thermal parameters were estimated by interpolation or extrapolation from the values used in successive pairs of ΔF syntheses. For this method, the sensitivity in root mean square amplitude of vibration is less than 0.003 Å at an amplitude of 0.23 Å. This corresponds to 0.1 Å² in B at B=4.0 Å². A ΔF synthesis showing the difference of thermal motion from that corresponding to B=4.0 Å² is shown in Fig. 4. For the 1226 observed reflections not appreciably effected by secondary extinction, R=16.0% when calculated including H atoms and an overall isotropic temperature factor with B=4.0 Å².

Fig. 3. Composite ΔF synthesis showing H atoms. Contours at intervals of 0.05 e.Å⁻³ beginning at 0.15 e.Å⁻³. Synthesis calculated using observed F only with $\sin \theta / \lambda < 0.48$.

Precision of the results

For 7 of the 1233 observed reflections, secondary extinction is sufficiently severe that they were coded as extinguished and given zero weight in all ΔF syntheses and included as F_c in F_o syntheses. From the 1226 remaining reflections, 1 scale, 36 positional and 42 thermal parameters were evaluated. Thus, there are 16 observations per parameter.

In order to evaluate standard deviations of the coordinates, it is necessary to know the curvature of the electron density, ϱ , for each atom in the direction of each coordinate (Cruickshank, 1949). In *n*-nonanoic acid hydrazide, not only do curvatures vary appreciably for different atoms of the same type, but also for the same atom in different directions. For such structures, the calculation of exact standard deviations in bond lengths although straight-forward is a matter of some complexity.

Sufficiently good values of the standard deviations in the bond lengths may be obtained by using 'average' curvatures calculated by assuming ϱ to be given by the equation $\varrho = \varrho_0 \exp[-pr^2]$ (Costain, 1941)

Fig. 4. Composite ΔF synthesis showing difference of electron density from that for spherical atoms with a temperature factor exp $-[4\cdot0\sin^2\theta/\lambda^2]$. Contour interval $0\cdot1$ e.Å⁻³. Positive contours solid, negative contours broken and zero contour omitted.

where ρ_0 is the peak electron density, r is the distance from the atomic center and ρ is assumed to be independent of direction for each atom and a constant for each atom type. Table 4 lists the peak densities taken from the F_o synthesis, Fig. 5, together with calculated values of p and central curvatures for each atom type (Booth, 1946).

For this and many other organic structures, average standard deviations in the coordinates calculated in this way give rise to standard deviations in the bond lengths which are larger than those given by the exact calculations. This follows from the observation that within a molecule, maximum curvature in the electron density tends to be in the bond direction and minimum

Table 4. Central densities and curvatures

Atom type	Central density	p	Curvature	$\sigma_{\rm positional}$
0	10·3 Å	3.70Å−2	$-59.3 \text{ e.} \text{\AA}^{-5}$	0·0026 Å
Ň	9.3	3.80	-53.3	0.0029
С	$7 \cdot 2$	3.52	-42.3	0.0037
н	0.5	1.98	-4.0	0.039

Fig. 5. Composite F_o synthesis. Contour interval 1.0 e.Å⁻³, zero contour omitted.

curvature at right angles to it. Standard deviations for the bonds between the various types of atoms are given in Table 5.

It is clear by inspecting the bond lengths in Table 2 that, except for the short C_8-C_9 bond, the C-C bonds in the paraffin chain are essentially of equal length. It is reasonable, therefore, to calculate an average C-C bond length and to take this as the best value. Remembering that the errors in bond lengths are not independent of one another, it can be shown that the standard deviation in the mean of the 7 'equal' C-C bond lengths, $\sigma_{mean C-C}$, is related to σ_{C-C} by the following equation:

$$\sigma_{\text{mean C}-\text{C}} = (\sigma_{\text{C}-\text{C}}/7) (6 \cdot 2^2 \cos^2 56 \cdot 5^\circ + 2)^{\frac{1}{2}} = 0.0023 \text{ Å}$$

For centrosymmetric structures, H atom positions as determined from ΔF syntheses are essentially independent of the positions assumed in calculating their contribution to the structure factors. In the present case, x and y coordinates were taken from a ΔF synthesis. But due to the coarseness along c of the grid at which $\Delta \varrho$ was evaluated, the z coordinates for H₄-H₁₇ atoms were taken equal to that of the C atom to which each is bonded. The lengths of the 14 methylene C-H bonds based on these H atom coordinates range from 0.959–1.235 Å, mean = 1.091 Å, $\sigma_{\text{mean}} = 0.018$ Å. This is to be compared with $\sigma_{\text{mean}} c_{-H} = \sigma_{C-H}/V(14) = 0.010$ Å calculated from the standard deviations of Table 5 (neglecting the small dependence of C-H bond lengths for H atoms tetrahedrally bonded to the same C atom). The former value is probably a more realistic index of the accuracy since it includes in a direct way the effects on H atom positions of inaccuracies in the heavy atom parameters. Indeed, it is to be expected that when calculated from $\Sigma h_i^2 \Delta F^2$, $\sigma_{\text{positional}}$ for light atoms in the presence of heavy atoms will be too small.

Table	5.	Standard	deviations	of	honds

Bond	σ	Bond	σ
C-0	0·0045 Å	N-N	0·0041 Å
C-N	0.0047	C-H	0.039
CC	0.0052	N-H	0.039

Any precision index is based on the fluctuations of the experimentally observed (or derived) quantities and is, therefore, independent of systematic errors. Thus, precision indices are a lower limit to the error to be expected at a given confidence level. Only in the absence of systematic errors is accuracy equal to precision.

Systematic errors in the observations may enter by way of errors in the apparatus, crystal aberrations or failure of the laws relating the actual quantities measured (optical densities in the present instance) to the structure factors. Not only may systematic errors enter through the observations, but also directly through the method of data processing or indirectly through the failure of the model assumed to fit the physical situation.

The model used in calculating structure factors assumes the electron distribution to be represented by the scattering factors as modified by a general Gaussian function. If the molecule is librating about an axis, this is not correct (Cruickshank, 1956) and bonds with components perpendicular to the axis of rotation will appear shortened.

In the case of long chain molecules, libration about the chain axis would result in shortening the bonds within the chain (Cruickshank, 1959). Although for *n*-nonanoic acid hydrazide it is not possible to distinguish between libration and simple anisotropic motion, we may assume anisotropy of the chain atoms in the *xy* plane to be due to libration and calculate an upper limit for the correction. It turns out to be small, about +0.002 Å in bond length, because the direction of maximum vibration (8° from (010)) is almost 40° from the normal to the plane of the molecule.

Since molecules are not rigid bodies, oscillation of parts of the molecule, particularly terminal atoms or groups of atoms, must not be neglected. In general, however, it is not possible to know with certainty the position of the axes about which such oscillations occur. If the chain behaved as a rigid body, oscillating about axes parallel to y through C_9 , a plot of $(u_{^{21}C_n}^2 - u_{^{21}C_9}^2)^{\frac{1}{2}}$ versus n, the number of the C atom in the chain, should be linear; and likewise for an axis parallel to x when $(u_{^{22}C_n}^2 - u_{^{22}C_9}^2)^{\frac{1}{2}}$ is plotted versus n. Fig. 6 shows such a plot for axes through C_9 , C_6 and C_4 . The plot shows that for oscillations perpendicular to the chain axis, the molecule does not vibrate as a rigid body. Approximately, however, C_1 , C_2 and C_3 appear to oscillate as a segment about axes close to C_4 .

Fig. 6. Square root of Δ m.s. amplitudes of vibration as a function of the number of the C atom in the chain. (a) About an axis parallel to b, (b) about an axis almost parallel to a. In both are plots for axes at the level of C₉, C₆ and C₄.

Only for these atoms are corrections appreciable, resulting in an average +0.003 Å for the C₁-C₂, C₂-C₃ and C₃-C₄ bonds.

That the corrections considered here may be relatively large is evident in the case of the C-O bond. By assuming oscillation of the O atom about axes through C₉, the correction to the bond length is +0.014 Å or more than 3σ . Much smaller corrections in the lengths of the C₉-N₁ and N₁-N₂ bonds are to be expected but have not been made because of uncertainty in the position of the axes of oscillation.

It must be emphasized that in n-nonanoic acid hydrazide the exact corrections to be made for rotary oscillation of the molecule or its parts are questionable. Nevertheless, their possible magnitudes, as indicated above, is a clear indication that in accurate work they must be considered. Collection of diffraction data at sufficiently low temperature would greatly reduce the effects. At liquid nitrogen temperature, for example, errors due to oscillation would be reduced by a factor of about 4, and in addition, precision would be increased by a factor of about 2. Thus for organic structures in the absence of heavy atoms, we could expect standard deviations in the bond lengths involving O, N and C atoms of about 0.002 Å.

Comparison of the structures of the nonanoic and dodecanoic acid hydrazides shows them to be very similar, and the several slight differences between them do not appear to be due to the fact that one has an odd number and the other an even number of carbon atoms. Thus the lack of alternation in the melting points of the homologous series is understandable. Indeed, Malkin pointed out as early as 1931 that alternation is not to be expected when the chains are normal to (001).

The differences between the two structures, although slight, are significantly larger than experimental errors. As indicated in Fig. 1 of a previous article (Jensen, 1956), the terminal hydrogen atoms in 'opposing' layers in the (001) plane in both compounds approximate a closest-packing arrangement, with hydrogen atoms of one layer fitting into nearly equilateral triangles of hydrogen atoms of the other layer. The H-H distances are significantly larger in the dodecanoic than in the nonanoic acid hydrazide. The separation normal to (001) between pairs of equivalent atoms is 0.14 Å greater in the dodecanoic than in the nonanoic acid hydrazide. This is probably a consequence of the larger thermal motion of the terminal atoms in the longer chain of the dodecanoic acid hvdrazide.

The plane of the chain also has a slightly different orientation in the two compounds. The angle between the *a*-axis and the line of intersection of the chain plane with (001) is $41^{\circ} 30'$ for the nonanoic and $45^{\circ} 30'$ for the dodecanoic acid hydrazide. These values may be compared with the angle of $41^{\circ} 23'$ reported by Shearer & Vand (1956) for hexatriacontane. Furthermore, although the chain plane is almost exactly normal to (001) in the dodecanoic acid hydrazide (89° 49'), the angle between the chain plane and (001) is decreased to 86° 23' in the nonanoic acid hydrazide.

Neglecting the C₈-C₉ bond, C-C bond lengths in the chain range from 1.521-1.535 Å (corrected), average 1.526 ± 0.0024 Å. If only non-systematic errors are present, the probability is 0.01 that the true value for the average would be outside the range $2.3\sigma = 0.0055$ Å. This indicates that the $0.0185 = 8\sigma$ difference from the 1.5445 Å value for the C-C bonds in diamond is significant.

The average C-C bond length in *n*-hexatriacontane as determined from X-ray diffraction is 1.534 ± 0.006 Å (Shearer & Vand, 1956). The C-C bond length in gaseous *n*-butane, *n*-pentane, *n*-hexane and *n*-heptane as determined by electron diffraction are respectively

$$\frac{1.533 \pm 0.003}{1.534 \pm 0.003}, \frac{1.531 \pm 0.002}{1.533 \pm 0.003}, \frac{1.534 \pm 0.003}{4}$$

(Bonham & Bartell, 1959; Bonham, Bartell & Kohl, 1959). If the precision indices quoted are standard deviations, there is no significant difference between these results and the average value from the present work.

The present results for the average C–C bond length differ from the 1.550 ± 0.0037 Å value in *n*-dodecanoic acid hydrazide by more than twice what would be significant at the 1% level. Comparison of the coordinates for the two structures indicates that the crux of the difficulty is in the y coordinates. And it is just these that were determined from incomplete data for *n*-dodecanoic acid hydrazide although allowance was made for this in calculating σ_y . The 02*l* and 04*l* reflections (except 020 and 040) were taken from second and fourth level b axis Weissenberg photographs. Due to difficulty in cutting satisfactory crystals for a axis photographs, the 0kl reflections were not scaled experimentally but against F_c in which thermal motion along b was assumed to be the same as that along a. The possibility that the difficulty lay in the scaling of the 0kl reflections was tested for *n*-nonanoic acid hydrazide by calculating three ΔF syntheses: (1) using 0kl reflections with k even and no rescaling from final two-dimensional calculations, (2) the same except 02l reflections rescaled by 0.9, (3) the same except 04l reflections rescaled by 0.9. The results show definitely that incorrect scaling of this type does shift the y coordinate and in a direction consistent with the difference found.

The C₈-C₉, C₉-N₁, C₉-O and N₁-N₂ bond lengths are all within experimental error of those for corresponding bonds in the other hydrazides studied in this laboratory (Jensen, 1954, 1956) and compare well with those in *cyclo*propanecarbohydrazide (Chesnut & Marsh, 1958). The significant difference between the lengths of the N-N bonds in the hydrazides and in hydrazine (Collin & Lipscomb, 1951; Giguere & Schomaker, 1943) is confirmed.

The length of the N-H \cdots N bond is 3.19 Å, nearly the same as the corresponding bonds in *n*-dodecanoic acid hydrazide and *cyclopropanecarbohydrazide* but considerably longer than the 2.97 Å and 3.04 Å N-H \cdots N bonds in isonicotinic acid hydrazide and the 2.92 Å N-H \cdots N bond in creatinine (Du Pré & Mendel, 1955). The N-H \cdots O bond length is 2.89 Å, appreciably longer than similar bonds in many other compounds (Mendel & Hodgkin, 1954; Pasternak, Katz & Corey, 1954) although shorter than the corresponding bonds in *n*-dodecanoic acid hydrazide and *cyclopropanecarbohydrazide*.

The C-C-C bond angles within the chain average about 3° larger than corresponding angles in *n*-dodecanoic acid hydrazide. The difference is due to the same systematic error in the *y* coordinates that resulted in the long C-C bonds. Angles about C₉ and N₁ appear to differ significantly from 120° and agree well with the corresponding angles in isonicotinic acid hydrazide and *cyclo*propanecarbohydrazide but again are apGlide equivalent

Glide equivalent

Glide equivalent

Glide equivalent

Trans. equivalent

Trans. equivalent

preciably different from those in *n*-dodecanoic acid hydrazide.

Atom	Shortest distance	Atom involved	Relationship
0	2·896 Å	N,	Trans, equivalent
Ν,	2.896	0	Trans. equivalent
N,	3.188	N,	Trans. equivalent
C,	3.744	C,	Across sym. center
C,	4.092	C,	Glide equivalent
C.	4.092	C,	Glide equivalent

4·135

4.135

4.094

4.094

3.440

3.640

C₅ C₄ C₇ C₆ O

 Table 6. Shortest intermolecular distances

If C_1 and C_9 are neglected, the least-squares plane through the remaining seven atoms in the chain is -0.5435x+0.5948y+0.0509z+1=0 referred to a, band c^* as coordinate axes. No chain atom, except C_1 , deviates significantly from this plane. But its deviation of -0.022 Å, while not great, is almost twice what would be significant at the 1% level considering its relatively large thermal motion perpendicular to the plane of the chain. It is remarkable that packing at the ends of the molecule is such that C_9 is within experimental error of and C_1 is so close to the plane determined by the other chain atoms.

The

C₄ C₅ C₆ C₇ C₈ C₉

group is very nearly planar. C_8 does not deviate significantly from the plane determined by OC_9N_1 but N_2 does, lying +0.029 Å $= 8\sigma$ from it. This plane makes an angle of 56° 2′ with that of the chain.

In Table 6 are listed the distances of closest intermolecular approach for each atom other than hydrogen in the molecule. There are no abnormally short distances. The authors wish to express their appreciation to Juanita Peterson for assistance in the early stages of refinement, and to acknowledge financial support from the Fund for Biological and Medical Research of the University of Washington and from Research Grant A-858 of the U.S. Public Health Service, Department of Health, Education and Welfare.

References

- BARTELL, L. S. (1959). J. Amer. Chem. Soc. 81, 3497. BINNIE, W. P. & ROBERTSON, J. M. (1950). Acta Cryst. 8, 424.
- BONHAM, R. A. & BARTELL, L. S. (1959). J. Amer. Chem. Soc. 81, 3491.
- BONHAM, R. A., BARTELL, L. S. & KOHL, D. A. (1959). J. Amer. Chem. Soc. 81, 4765.
- BOOTH, A. D. (1946). Proc. Roy. Soc. A, 188, 77.
- CHESNUT, D. B. & MARSH, R. E. (1958). Acta Cryst. 11, 413.
- COCHRAN, W. (1951). Acta Cryst. 4, 408.
- Collin, R. L. & Lipscomb, W. N. (1951). Acta Cryst. 4, 10.
- COSTAIN, W. (1941). Ph.D. Thesis, University of Birmingham.
- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.
- CRUICKSHANK, D. W. J. (1956). Acta Cryst. 9, 757.
- CRUICKSHANK, D. W. J. (1959). Private communication.
- DU PRÉ, S. & MENDEL, H. (1955). Acta Cryst. 8, 311.
- GIGUERE, P. A. & SCHOMAKER, V. (1943). J. Amer. Chem. Soc. 65, 2025.
- Howells, E. R., Philips, D. C. & Rogers, D. (1950). Acta Cryst. 3, 210.
- JENSEN, L. H. (1954). J. Amer. Chem. Soc. 76, 4663.
- JENSEN, L. H. (1956). J. Amer. Chem. Soc. 78, 3993.
- JENSEN, L. H. & LINGAFELTER, E. C. (1953). Acta Cryst. 6, 300.
- KYAME, L., FISHER, G. S. & BICKFORD, W. G. (1947). J. Amer. Oil Chemists Soc. 24, 332.
- MALKIN, T. (1931). J. Chem. Soc. 1931, 2796.
- MENDEL, H. & HODGKIN, D. C. (1954). Acta Cryst. 7, 443.
- PASTERNAK, R. A., KATZ, L. & COREY, R. B. (1954). Acta Cryst. 7, 255.
- SHEARER, H. M. M. & VAND, V. (1956). Acta Cryst. 9, 379.